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Abstract Chemical Engineering design and analysis is dominated by the use of modular
computational systems restricting the use of rigorous global optimisation techniques. Other
engineering domains also exploit modularity in order to break down complex tasks to allow
the use of legacy codes, to protect intellectual property, and to allow large teams to work on
problems. By casting modules in a generic form such systems could be recast to incorporate
interval based methods. In this paper we explore the use of five interval contraction meth-
ods to improve the performance of interval based optimization of modular process design
systems: consistency methods, constraint propagation, Interval Gaussian elimination, Inter-
val Newton, and Linear Programming. It is shown that the Linear Programming contractor
provides the greatest value in contracting the intervals and that constraint propagation and
Interval Gaussian elimination (as implemented here) provides less of an impact. Other con-
tractors do provide value and the LP contractor will be of less value as the problem size
increases so it is necessary to include a number of contractors which can be done at small
computational cost. A number of challenges are outlined which need to be addressed before
there can be routine use of interval global optimization in modular systems.
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1 Modular chemical process design

As in all branches of Engineering, optimisation of new designs and of the operation of man-
ufacturing plant is critical for a competitive business. In the field of Chemical Engineering
this has become more clearly codified in the computational systems used for design and for
management of operations. Most design systems now have the capability to optimise the
design, almost always using gradient based methods, and the control systems on process
plant have on-line optimisers, again using gradient based methods, which try and ensure
that the operations are running in the most efficient manner. This capability is now used
routinely [8].

The need for process optimisation is becoming more widespread as the manufacturing
objectives become more complex. Financial efficiency, however defined, is no longer the
only optimisation criterion used. Safety is considered to be the number one priority for any
design of new plant or modification of existing plant. Now increasingly the environmental
performance of the plant is becoming a key issue in its acceptance by the regulatory authori-
ties for permission to operate. Of course this comes from increasing pressure from society in
general. This often results in a trade off between economic performance and environmental
performance but both can be formulated as optimisation problems.

A typical design problem is to find an optimal solution as defined by a quantified objective
function based on cost, environmental performance, or safety. A chosen collection of vari-
ables will be selected as design variables and a solution found which maximizes the given
objective function. Inequality constraints may also be imposed on the optimization problem.
For example, a lower limit may be placed on the purity of a stream. It may also be necessary
to add equations to evaluate the objective function, such as cost correlations, to the system
of equations.

One of the big technical issues restricting the effectiveness of process optimisation is that
the process models are frequently non-convex. These non-convexities arise from combina-
tions of nonlinear functions and from discontinuities in the describing equations and their
derivatives. This of course means that the likelihood of finding a local minimum is very
high. Since all the problems of any significance are large it becomes impossible to exploit
specific mathematical features of a particular problem to avoid finding local minima and so a
systematic means of finding genuinely global minima, particularly when there are significant
differences between local and global minima, becomes very important.

Reviews of global optimisation methods have been provided by Torn and Zilinskas [34]
and Horst and Tuy [21]. There has recently been increasing interest in deterministic and
stochastic global optimisation methods in the Chemical Engineering literature. Floudas [10]
gave a recent review of the use of the development of global optimisation techniques for pro-
cess engineering problems and many contributions have been gathered in Grossmann [15].
Floudas and Visweswaran [12] presented a ‘primal-dual’ decomposition approach based on
the Generalised Benders Decomposition. Vaidyanathan and El-Halwagi [35] and Byrne and
Bogle [6] have proposed modifications to interval methods [16,27]. Ryoo and Sahinidis [31]
used convex underestimators to solve a large number of engineering problems. Adjiman
et al. [1] present a global optimisation method for solving general chemical process design
problems. Quesada and Grossmann [29] developed specialised convex underestimators for
solving a class of heat exchanger network problems and bilinear mass transport problems.
Garrard and Fraga [13] use stochastic methods for seeking the global optimum of a synthesis
problem.

The computational systems for designing or analysing such plants have mostly been devel-
oped to mimic flowsheet structure. Individual modules or procedures have been developed
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for each unit and are connected together in an appropriate calculation order. The recycle is
handled iteratively and there are computational strategies for handling specifications placed
on streams other than inputs, such as a desired product quality. These systems are called
Sequential Modular systems [3,32]. More recently Equation Oriented systems have appeared
commercially where the equation set is assembled and solved simultaneously [28]. A thor-
ough comparison is provided by Biegler et al. [4]. The second class has greater flexibility in
that a wider range of numerical codes can be used and the extension to dynamical systems
is straightforward. However, the natural structure of the problem is lost during the solution
phase and this causes difficulties in trouble shooting when problems arise in finding the
solution. Sequential Modular systems dominate the market.

The Sequential Modular approach to flowsheeting links together sequences of models,
implemented as computational procedures or modules, for the unit operations and calcula-
tions follow this sequence. Recycles and design specifications are handled by a number of
alternative methods. Modularity is one of the oldest of software engineering paradigms. It has
a number of advantages: it aids understanding by presenting a system in distinct functional
chunks, modules are reusable, and modifications or a replacement can be made to one module
without affecting others.

The procedures can be broken down into two types.
Algebraic procedures: A procedure P computes its outputs, y, by solving a set of nonlinear

algebraic equations where some variables, w, are internal to the procedure itself, i.e. they do
not occur in the mathematical optimisation problem. The equations are solved to determine
y and w for given values of the input variables, u, and the values of w are discarded while
those of y are returned as the outputs of the procedure, effectively establishing the required
mapping:

y = P(u).

An example of an algebraic procedure is a computational module that describes the steady-
state behaviour of a distillation column. In this case, the input variables u could be associated
with the properties of the feed stream(s) to the column, the reflux ratio and the boil-up rate;
the output variables y would include the properties of the column output streams; and the
internal variables w would comprise all the variables describing the composition, temperature
and flowrates internally to the column.

General procedures: Procedures of this type compute their outputs by executing a sequence
of computational instructions which may involve not only the evaluation of simple numer-
ical expressions but also iterative loops, conditional statements and so on. Such procedures
typically take the form of Fortran subroutines or equivalent constructs in other procedural
computer languages. An example is provided by physical property prediction, e.g. the spe-
cific enthalpy of a mixture is the output of a subroutine which computes its value from given
values of the mixture temperature, pressure and composition as inputs. These often involve
internal iterations and are usually provided as a separate program from the simulator but
linked computationally.

Previous work has applied global optimisation techniques to problems where the equa-
tions are explicit. Here we have addressed the problem of applying global optimisation
using interval methods to modular approaches to chemical process design, often called
process flowsheeting. Interval analysis has also been applied to many applications in
chemical engineering [25,33] but the focus here will be towards solving modular flow-
sheet design problems. We have explored the basic premise [7] but many challenges
remain.

123



172 J Glob Optim (2009) 45:169–185

Input

N stream 

Cost

P -Input 
Parameters

r-Residuals

    MODULE 
Output

M stream 

Real values 

Gradient values 

Interval

Bounds

Real values 

Gradient values 

Interval

Bounds

Fig. 1 A Generic module allowing multiple types

2 Applying interval analysis to modular flowsheets

Byrne and Bogle [7] showed that the sequential modular approach can be formulated in a
way to take advantage of interval methods. Modules are connected in the same way but can
be modified to handle interval arithmetic. A generic module can be formulated to allow point
values or intervals for all the input streams and unit parameters. The module calculates the
conditions for the output streams as either values or as intervals. Modular flowsheets are
constructed with generic unit modules that can provide the interval bounds, linear bounds,
derivatives and derivative bounds using extended arithmetic types. An extended arithmetic
type is a compound type together with a set of rules that define operations on it [27]. In this
case when an interval compound is used according to the rules of interval arithmetic, the
extended type (T) used is an interval. Using interval analysis and automatic differentiation
as the arithmetic types, lower bounding information is used for optimization in a branch and
bound framework.

Figure 1 illustrates a generic module allowing multiple types. This module must allow
the transformations that need to be applied to some underlying type, T, to obtain the output.
Each unit has input and output streams which are the feeds for the successive units. Input
parameters determine how the unit operates, for example the split fraction in a splitter, and a
cost can be evaluated based on calculated outputs. Residuals represent constraint violations.

Such modules can be developed to describe the operations in a process plant and then
the appropriate operations are applied to data of type T. For example, a module which adds
its inputs should use the interval arithmetic operations if the underlying type is an interval
(T = interval). This formulation also includes models using traditional arithmetic. We have
used interval operations within Matlab to test our method but some Sun compilers support
interval operations.

Flowsheets can be built up from generic units and then evaluated using the operations
for an extended type, T, which provides the information necessary for global optimization
using interval methods where the variable type <T> used is interval. Each unit calculates
the output streams (a vector of physical variables such as flowrates and temperature) and the
cost associated with the unit as intervals. The summation of the costs provides the objective
function. Design constraints are added outside the module to the optimization algorithm. A
simple example is shown in the Appendix.

Interval gradient types have been used, and the global optimisation algorithm uses the NE
(natural extension) and MV (mean value) underestimation schemes [6] to construct a linear
relaxation of the objective function and constraints in terms of the optimisation variables. The

123



J Glob Optim (2009) 45:169–185 173

solution of this linear relaxation provides the necessary bounds on the optimisation problem.
The variable types <T> used were intervals with interval arithemetic and interval gradients
using rules of automatic differentiation.

3 Interval global optimisation methods

The key to finding the global solution is the identification of the upper and lower bound
to the problem. The algorithm used by Byrne and Bogle [6] uses bound constrained linear
programs which can be created from a modularly constructed flowsheet. The relaxed prob-
lem formulation allows convex constraints formed from non convex problems (NCP) to be
included in the lower bounding procedure.

3.1 The linear lower bound approach

The linear lower bound approach [5] generates linear lower bounds for a function, f. This
is conducted by decomposing f into simpler functions, such as monotonic convex functions.
Once linear lower bounds for each of the simpler functions are found, these bounds are
recombined to obtain a linear lower bound for the original function. This approach assumes
that f can be decomposed into simpler functions.

When relaxing constraints to find a lower bound it is important not to create too many
additional variables. Thus, in place of introducing additional variables for nonlinear inter-
mediate expressions, it is possible to relax the original constraints directly. Constraints are
formulated as a difference of convex functions. Forward propagation is obtained in an auto-
matic differentiation like manner, described in Kolev and Nenov [24]. This type of method
is described in Byrne and Bogle [6].

3.2 Interval linear underestimators

Linear models have been proposed in Byrne and Bogle [6]. They are the MV and NE under-
estimators. The NE underestimators are linear under/over relaxations which can be used to
obtain a linear relaxation of any variable of the problem. Because they are linear they can
easily be characterised by the coefficients of the different components and a Linear Program-
ming problem can be constructed. The MV relaxation also provides linear underestimators.
The underestimators are constructed from gradient information in a similar manner to lin-
earisation. This method has a particular advantage that one set of gradient bounds obtained
by automatic differentiation can be used to construct as many underestimators as necessary.

Reformulation of the lower bounding problem is used to increase the number of constraints
and terms in the objective function which can be retained in the lower bounding problem.
This reformulation opens the possibility of adding more complementary relaxations (MV or
NE) to the lower bounding problem. The MV relaxation is more general and more widely
applicable, although less tight, than the α − BB relaxation [1] providing a linear relaxation
of any once differentiable term in the problem by using interval analysis to bound the gra-
dient. Though it is possible to construct convex relaxations using these techniques we have
chosen to use only linear relaxations of NCP. The decision to use linear relaxations is based
on the need to solve relaxed problems efficiently and reliably in preparation for the modular
systems. This work can be found in Byrne and Bogle [6].
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3.3 The interval optimization algorithm

The algorithm used here in optimising modular flowsheets can be found below. The algo-
rithm relies on bounding the objective function over subsets, χk, of the feasible region, and
maintaining an upper bound (indicated by a superscript u) on the value of the global optimum
(yu). If the lower bound (indicated by a superscript l) for χk is greater than yu then χk cannot
contain a global minimiser. As the partitions are refined the lower bounds become tighter
and form a closer approximation of the objective function. When the difference between the
lower and upper bound is within a certain tolerance then the global minimiser is located in
the current partition. The algorithm used is as follows.

Algorithm: [6]

1. Initialise

(a) a counter, k = 0
(b) an initial region, Xo ⊇ A where A is the full range of all variables.

(c) store a triple χ =
{

X = Xo, yo = f (X)l , xo

}
where xo is not set.

(d) an upper bound on the global minimum yu = infinity

2. Select and remove a stored triple, χk, with the lowest stored value of yk.
3. If xk is not set then set xk equal to the local minimiser or a feasible point of A ∩ Xk if

one can be determined by the local minimization phase.
4. If |f(xk) − yk| ≤ ε then

(a) xk is a global minimiser
(b) Terminate

5. Set yu = min {f(xk), yu}
6. Partition χk giving χL and χR.
7. Update yl

Land yl
R. Store χL and χR.

8. Remove any stored triples, χj, j= 0 . . . k for which:

(a) Xj is completely infeasible
(b) yl > yu

9. Increment k and return to step 2.

The algorithm can be modified to find all the global optima [2].
Byrne and Bogle [7] found modular optimisation computationally demanding. A variety

of approaches to interval contraction have been applied and tested on flowsheeting problems
here to explore ways of improving computational performance.

4 Interval contraction methods

The potential exists to improve interval global optimisation techniques within flowsheeting
programs. Jaulin et al. [23] reviewed many interval contraction methods which tighten interval
bounding. Our goal here is to investigate the broad range and variety of contraction methods
available in the context of modular flowsheeting. In this work contractors based on the fol-
lowing operations have been used: Consistency techniques, Constraint propagation, Linear
Programming contractors, Interval Gaussian elimination, and the Interval Newton contractor.
The Contractors were inserted into the global optimisation algorithm above before step 6.
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4.1 Consistency techniques

To determine the precise hull which encloses the solutions of a set of interval equations is
NP-hard. However, contractors can be determined which enclose the region. Take an equation
f(x,y) = 0 and assume that x and y are in intervals X and Y, respectively. The values of x ∈ X
and y ∈ Y such that f(x,y) = 0 and for any y ∈ Y there exist x ∈ X such that f(x,y) = 0. If
a scenario arises where x ∈ X and there is no y ∈ Y such that f(x,y) = 0, then these values
of x can be excluded from consideration when seeking solutions for f(x,y) = 0. This concept
of consistency can be applied to more than one variable which allows the elimination of
sub-boxes.

There are two main consistency procedures known as Box and Hull consistency [26].
These methods are diverse and have been applied to other types of engineering problems
[36]. The version and implementation we have used is the ‘box-consistency’ method taken
from Hansen and Walster [18]. Hull consistency methods have been proposed but they are
NP-hard and have been excluded.

Assume the solution of a given problem must satisfy the nonlinear constraint

f (x1, . . . , xn) = 0.

Suppose that we seek a solution in a box X. We can use box consistency to eliminate sub-boxes
of X that cannot contain a point satisfying the above equation.

If we replace all the variables except the i-th by their interval bounds (i.e. components
of X), we obtain the following equation

q (xi) = f
(
X1, . . . , Xi−1, xi, Xi+1, . . . , Xn

) = 0.

If zero is not within q(xi) in some subinterval X′
i of Xi, then we do not have consistency for

xi ∈ X′
i and the sub-box

(
X1, Xi−1, xi, Xi+1, . . . , Xn

)
of X can be deleted.

4.2 Constraint propagation

There are various types of constraint propagation discussed in Jaulin et al. [23]. The type of
propagation we have used is the forward-backward contractor because it is more adaptable to
modular flowsheets. This method takes one constraint in isolation, say

{
qi (xi, . . . , xn) = 0

}
then deduces better bounds for a particular variable using other variable bounds by rearrang-
ing the constraint. The qk chosen is most often a linear or quadratic function of a single
variable only.

This technique may save a number of branching steps and thus speed up the interval algo-
rithms. Special care should be taken in presenting (or transforming) the problem in a form
which has as much separability as possible.

4.3 Linear Programming contractor

A linear Programming (LP) contractor bounds the solution set of the linear interval equation
system. Given an upper bound, yu on the solution of the non convex problem (NCP) and an
enclosing set of lower bounding constraints this forms a LP with the reformulated non linear
variables incorporated into the vector x of independent variables. This model is created by
MV underestimators and overestimators of the constraints and objective function.
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The contraction step solves a set of LPs to tighten the bounds on each of the variables
from the NCP. For each xi that appears non linearly in NCP it is necessary to solve

min xi

s.t. cTx ≤ yu, Ax ≤ b

to tighten the lower bound on xi and an equivalent problem for the upper bound. If either of
these problems is infeasible then the box, Xk, can be deleted.

This method can be particularly useful when the initial interval boxes are much larger
than the feasible region.

4.4 Interval Gaussian elimination methods

An interval version of Gaussian elimination is obtained from real arithmetic by simply replac-
ing each real arithmetic step by the corresponding interval arithmetic step. This produces for
a linear system, in this case the linearised constraints, an enclosure of the bounds on the
solution. This is discussed in Hansen and Walster [18]. The linear system Ax = b becomes
an interval equation.

Using interval arithmetic we replace the real rational function by an inclusion isotonic
interval extension of the rational function. An interval function F is said to be inclusion
isotonic if Xi ⊂ Yi (i = 1,…, n) implies F (X1, . . . , Xn) ⊂ F (Y1, . . . , Yn) . Each such
component of the real solution constitutes a point, s, and the interval solution must contain s.

However, simply replacing real Gaussian Elimination by an interval version is generally
inefficient. Bounds of intermediate quantities tend to grow very quickly because of accumu-
lated rounding errors and especially because of dependence among the generated intervals.
Preconditioning can help with this problem.

4.5 Interval Newton contractor

The Interval Newton method is concerned with finding and bounding all the solution vectors
of f(x) = 0 in a given box X0. The method was derived by Moore [27].

Hansen and Walster [18] applied the Interval Newton method using the Fritz–John con-
dition to contract intervals with problems involving equality constraints. They show that this
requires a substantial amount of computing due to extra interval variables of the Lagrange
multipliers which are needed to solve the Fritz-John condition. This type of information
will not be readily available in modules of modular process flowsheeting systems and thus a
decision was made to avoid using the Fritz–John conditions.

An alternative technique is available for the Interval Newton method. If we fix a subset
of the independent variables to obtain a square system as discussed in Hansen and Walster
[18], both the Interval Gaussian Elimination and Interval Newton methods can be applied
to this square system. The Interval Newton and Interval Gaussian methods are classified as
fixed point contractors.

The Interval Newton procedure has some unique properties: for instance if there exists
a solution x* of f in Xn before contraction then x* is also in the contracted interval. Also
the Interval Newton algorithm always converges if there is a solution [16]. Other properties
include that every discrete zero of f in X0 is isolated and bounded to arbitrary accuracy and
that if the intersection of the contracted interval and Xn is empty there is no zero of f in Xn.
Other properties can be found in Hansen [17].
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4.6 The implementation of fixed point contractors

Interval Newton and Interval Gaussian methods are easily applied to a problem containing
an equal number of variables as constraints. These fixed point contractors can be applied
to a non-square system once some variables are fixed to make the system square. The aim
now for these fixed point contractors is to obtain a feasible point in the box. This fixed point
is regarded as the upper bound. If the lower bound of a box is greater than a feasible point
(upper bound) then the box can be deleted and as a result regions can be removed. This is
still a form of contraction, but regions are removed as opposed to reducing the interval range.
Hansen and Walster [18] describe this method in more detail.

In an optimization problem the number r of equality constraints is less than the number n
of variables. Otherwise, it is generally possible for the constraints themselves to determine
the solution point(s) with no degrees of freedom remaining to minimise f. Suppose we want
to determine whether there is a feasible point in a given box X. Let x denote a variable value
in X, and let c be the centre of X. We fix n − r of the variable components of x by setting
xi = ci for i = r + 1, …, n.

To choose which variables to fix we use the method discussed in Hansen and Walster [18].
q constraints are linearised about the centre x of a box X by using the Taylor series expansion.
The following steps are taken to decide which variables to fix.

1. Compute a real matrix Jc, which is the approximate centre of the r by n matrix J(X).
2. Carry out Gaussian elimination on Jc using both row and column pivoting to manipulate

Jc into a form in which elements in position (i, j) are zero for 1 ≤ i ≤ r and 1 ≤ j ≤
r except for i = j. In the process, the final column pivoting should ensure that the final
element in position (r, r) is largest in magnitude among the elements in position (r, j) for
j = r, …, n.

3. Select the variables corresponding to those now in the final columns r + 1,…, n to be
those to be replaced by their fixed points.

Once the variables have been chosen to apply a step of the fixed point contractors let Z′
denote the solution box for Z, the remaining interval members of X. If Z′ ⊂ Z, then there
exists a solution of the constraint set in Z′. This implies that there exists a feasible point in
the n-dimensional box

X′ = (
Z1, . . . , Z′

r; cr+1, . . . , cn
)T

which is a partially degenerate sub-box of X, because of the fixed points.
If Z′ ⊂ Z, then any of the fixed point contractors can be changed to reduce the size of the

box bounding the feasible point. The smaller the box, generally the smaller the upper bound
on f over the box.

If we have proved that a feasible point exists in a box, X, then the contracted intervals and
fixed points are substituted into the objective function to give an upper bound. We evaluate
f(X) producing upper and lower bounds. f(xk)

u is an upper bound for the global minimum.
The global optimisation algorithm is updated every time an upper bound is calculated.

This will be inserted into the global optimisation algorithm to find a feasible point, and
will be used as an upper bound to the problem. As the algorithm is being processed the
interval boxes are being reduced in size and the Interval Newton method will provide better
feasible points updating the upper bound.

The Interval Gaussian method is highly dependent that a zero does not occur in the denomi-
nator at any stage of the Gaussian Elimination method. If a zero does occur in the denominator
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then the method will not be used in the iteration. Methods are available to tackle this problem,
but the complexity of the Interval Gaussian algorithm will increase and will be impractical
when applied to flowsheeting problems. For this the reason both Interval Newton and Interval
Gaussian Elimination methods have been investigated.

5 Numerical results

5.1 Mathematical problem set

The contractors were inserted in the global optimisation algorithm and were first applied to
a set of mathematical problems. Each problem has a variation in the degree of complexity
and reflect the difficulty found in flowsheeting problems. The problems contain equality
constraints because they occur frequently in modules of flowsheeting problems. From the
results obtained we should be able to identify the influence of interval contraction techniques
on global optimization. The tolerance of all the problems tested is 0.001, unless specified.
The computer used was a Pentium IV 1.5 GHz and the programme was Matlab 6.5 and the
interval arithmetic package for Matlab (Acsysteme) by Houizot [22] was used which is based
on the algorithms in Jaulin et al. The maximum designated time the simulation is allowed to
run for was 12 h.

We have taken three problems from the set published by Hock and Schittkowski [20]:
problems 39, 31 and 79 (all polynomial functions up to order 4 with 4, 3 and 5 variables,
respectively). Table 1 demonstrates the influence of each contractor. Any combination of
contractors can be used simultaneously. Rather than report the performance of each contrac-
tor individually we have presented the results with no contractors, with all contractors, and
with each contractor removed individually. The number of ‘iterations’ is presented where
this corresponds to box divisions along with the computational time taken to find one global
minimum. A—indicates that no solution was found in the maximum time allowed.

From the results it can be seen that interval contractor techniques are definitely improv-
ing global optimisation. The most effective contractor is the Linear Programming contractor
as considerable decreases were seen in numbers of iterations and global optimisation times
using this contractor. However, the Linear Programming Contraction is NP-hard and may
not be as effective for larger problems [6]. If the initial bounds are unnecessarily bigger
than the feasible region then the Linear Programming contractor has the ability to eliminate
these unnecessary regions. For the third problem the Consistency Method provided some

Table 1 Results of global optimisation algorithm using different contraction techniques

HS Problem 39 HS Problem 31 HS Problem 79

Iterations Time Iterations Time Iterations Time

No contractors 168 177.75 70 65.98 – –

w/o consistency method 5 5.12 13 14.02 249 531.43

w/o constraint propagation 5 5.23 13 12.92 252 523.33

w/o Interval Gaussian 5 5.06 13 12.45 324 596.0

w/o Interval Newton 5 5.51 13 13.23 254 479.0

w/o Linear Programming 123 206.7 70 78.0 455 1490

All contractors 5 5.96 13 14.42 249 532.33
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contraction in the global optimisation algorithms. Constraint Propagation provided some
interval contraction. On the third problem (Hock and Schittkowski problem 79) the Interval
Gaussian contraction performs better than the Interval Newton method. There is no conclu-
sive best method here particularly since the problems are all small. The other contraction
methods (apart from the LP contractor) may make a more significant contribution on larger
problems and in flowsheet design problems.

5.2 Flowsheet design problems

5.2.1 Haverly pooling problem

The Haverly Pooling problem (Haverly [19], with details of the specific problem in Floudas
and Pardalos [11]) has been used as a test case for global optimisation by many authors.
This problem is to blend four feeds into two products to minimize the total cost (Fig. 2).
Each feed has a composition and cost and each product has a cost, required composition, and
flowrate. The feeds are mixed to produce products that satisfy the quality requirements using
mixer and splitter units to represent the blending tanks. Further details of the problem can be
found in Quesada and Grossmann [30]. The problem is a small scale blending problem and
is non-convex due to bilinear terms.

The procedure presented here can be used to obtain the global optimum of large scale
non-convex blending problems by reusing a very small number of generic units (mixers,
splitters, feed and product units). This pooling/blending problem, and any other pooling or
blending problem, can thus be formulated as a modular problem. It is natural to view the
problem in terms of interconnected units with each unit performing some transformation of
the input stream to provide the output stream. The flowrate is determined by a single input
parameter and the cost by multiplying the unit cost, by the flowrate. The quality constraints
placed on the two product streams become residuals in the product modules which have

Xa =0.01 
C = 16 

Feed 1 

Xa = 0.01 
C = 6 

Feed 2 

Mix Split α

Xa 0.02 
C = 10 

Feed 3 

Xa = 0.02 
C = 10 

Feed 4
Mix

Mix
Xa ≤ 0.015 
C = -15 

Product 1 

Xa ≤ 0.025 
C = -9 

F ≤ 200 

Product 2 

F ≤ 100 

F ≤ 100 
F≤100

F ≤ 200 F ≤ 300 

Fig. 2 The Haverly pooling problem (F—flowrates, Xa—concentration of component A, C—costs)
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Table 2 Results for the Haverly
pooling problem

One solution All solutions

Its s Its s

No contractors 225 32 591 718

w/o consistency method 60 93 140 193

w/o constraint propagation 60 92 140 193

w/o Interval Gaussian 60 89 140 191

w/o Interval Newton 60 90 140 192

w/o Linear Programming 225 318 591 734

All contractors 60 93 140 193

one input stream and no outputs. In this formulation there are four independent variables
partitioned and bounded by the interval optimization algorithm.

The modular global optimization algorithm is used together with a local minimization
procedure to find a local upper bound. As the intervals are passed through the flow-sheet, if
the intervals do not satisfy the product constraints then the interval box can be deleted (the
consistency method). Constraint propagation uses the equations which produce the product
residuals. The Interval Newton and Interval Gaussian procedure require specific information
from certain parts of the modular flowsheet. As constraints occur only in the product spec-
ifications, the differential information and residual information will only be required at this
point. The Linear Programming contractor requires cost information from the flowsheet and
derivative information for both cost and variables. Finally the lower bound of the cost will
be calculated by forming a linear model with underestimators.

The results for this problem can be found in Table 2. This time we have also included the
results for when the algorithm is permitted to find all global optima. As with the mathematical
problem set it is the LP contractor which provides all the contraction with little computational
overhead.

5.2.2 Recycle flowsheet problem

The recycle problem taken from Floudas [9] was cast in a modular fashion and globally
optimised in Byrne and Bogle [7] and this formulation was used here.

The problem is a plant involving the production of monochlorobenzine. Each unit has a
capital cost and an operating cost which is incorporated into the objective function through a
pay back time of 2.5 years. The principal units are a continuous stirred tank reactor (CSTR)
and two separation columns, and unreacted feed is recycled back to the reactor. The reac-
tor models the reaction between chlorine and benzene to produce monochlorobenzene and
dichlorobenzene at a constant temperature.

The reactor model has a single input stream. The three parameters associated with this
model are two rates of reaction and the volume. The cost of the feeds and products are:
the purchase price of benzene $27.98/kmol and chlorine $19.88/kmol, and the sale price of
monochlorobenzene, $92.67/kmol for which there is a demand of 50 kmol/h. Both distillation
column models assume that the columns performs sharp splits. A splitter module is used to
purge a fraction of the recycle stream. There are six independent variables in this problem
which are partitioned and bounded by the interval optimization algorithm.
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Table 3 Results for the recycle
problem

One solution All solutions

Its s Its s

No contractors – – – –

w/o consistency method 240 1,930 246 2,083

w/o constraint propagation 154 1,020 160 1,170

w/o Interval Gaussian 154 996 160 996

w/o Interval Newton 166 927 172 943

w/o Linear Programming – – – –

All contractors 154 1,060 160 1,210

Table 4 Results for the reactor
network problem

One solution All solutions

Its s Its s

No contractors 532 1,049 1,325 2,600

w/o consistency method 283 614 379 634

w/o constraint propagation 52 77 111 169

w/o Interval Gaussian 52 68.14 111 135

w/o Interval Newton 83 82 111 135

w/o Linear Programming 76 80 183 242

All contractors 52 79.62 111 170

Table 3 shows that again the LP contractor proves to be the best contractor since without
it no solution is found within the time constraint. However, this time the other contractors
do have an appreciable effect with the consistency method proving to give the most value.
Constraint propagation and Interval Gaussian have no effect.

5.2.3 Reactor network problem

The last example, taken from Ryoo and Sahinidis [31], is a reactor network design problem.
This problem was chosen because it involves two complex reactors in series. It is natu-
ral to view the problem in terms of interconnected units with the reactor units performing
some transformation of the input stream to provide the output stream. Here there are three
independent variables.

For this problem it is not the LP contractor but the consistency method which provides
the largest impact. Again the constraint propagation and Interval Gaussian methods have no
effect. The LP contractor is still making a significant difference (Table 4).

From the results obtained it is evident that interval contractor techniques are definitely
improving the interval global optimisation algorithm. The most effective contractor is the
Linear Programming contractor as seen also with the mathematical problems. The approach
applying the interval Newton method has a positive impact also. Constraint propagation and
the Interval Gaussian method seem to be ineffective for modular flowsheet problems while
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the consistency method in some cases gives value. We believe that this is due to exacerbation
of the interval dependence problem. The computational overhead for these contractors is
in many cases not significant so it is useful to include any that do contribute to the con-
traction. In the case of these small problems the price to pay for finding all solutions is
not large. However, this may be considerably more significant for larger and more complex
problems.

6 Conclusions

The main conclusions of the paper are:

• An interval global optimisation algorithm has been applied to solving modular flowsheets
incorporating the interval contraction techniques which help to improve computational
performance

• Constraint propagation and the Interval Gaussian elimination procedure proved to be
ineffective in solving these flowsheeting problems.

• Linear Programming techniques have proved to be the best contractor for solving these
flowsheeting problems. However, other contractors do make a contribution and the com-
binatorial problems that the LP method has for large problems make it important to
retain a combination of contractors. Also, this relies on derivatives which if determined
numerically can be noisy which may make the LP contractor unuseable.

We have demonstrated that interval global optimization methods can be used with modular
systems to determine the globally optimal solution(s) to design and operational problems,
and that contraction methods can improve the computational performance. Existing systems
do not currently support interval techniques so to use these ideas commercially would require
modification of the modules and data structures within the simulation system. This would
require converting data types to be of interval type within modules and the integrating sim-
ulation program, to provide derivatives (but see the final bullet point below), and to use a
compiler that supported interval operations.

A number of major challenges remain before this capability can be incorporated in com-
mercial systems.

• Any implementation would require the support of interval variable types.
• Many modules have internal iterations which would need to be solved perhaps by the

interval Newton algorithm.
• Physical property calculation modules would have to be formulated to handle intervals.

In principle these are just complex general procedures of the type outlined above.
• Handling discontinuities formally within flowsheet modules in a generic way is required.
• It is unrealistic to expect all modules to provide partial derivatives (although many cur-

rently do) so a method for determining derivatives of procedures automatically is required.
Griewank et al. [14] have developed methods for automatic differentiation of procedures
so there are ways forward to be explored.
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Appendix: Interval propagation for component 1 for the Haverly Pooling problem

For a modular system intervals for the independent variables are passed through the modules
of the flowsheet. In the case of the Haverly Pooling problem there are just two types of
module, the mixer and the splitter. In this case each module only consists of one equation but
often they are much more complex with many equations, branches, and iterations. This is the
simplest problem of its type but is still a non-convex optimization problem and represents a
class of problems which can be of any size. Many pooling problems have many mixers and
splitters and more complex units.

The vectors of interval stream variables (Si), consisting of intervals of flowrates for each
of the two component, are fed to the modules. For the first component these intervals are:
S1 = [250 300], S2 = [150 300], S3 = [0 200], S4 = [0 100], and α = [0.5 1].

All Mixer modules implement the interval equation

Sj,out =
∑

Fij for each component, j, all i input streams

which since all mixer cases here have only two inputs reduces, for each component, to

S5 = S1 + S2.

Substituting the interval vectors above stream 5 becomes S5 = [400 600]. S5 passes to the
splitter module which implements the equations

Sout1 = α Sin

Sout2 = (1 − α) Sin

or in this case

S6 = α S5

S7 = (1 − α) S5

and for the first component S6 becomes [200 600].

Feed 1 
Module

Feed 2 
Module

Mixer
Module

Splitter
Module (α)

Feed 3 
Module

Feed 4 
Module

Mixer
Module

Mixer
Module

Product 1 
Module

Product 2 
Module

S1

S2

S3

S4

S8

S9S7

S6

S5

Fig. A1 Modular flowsheet for Haverly pooling problem showing stream variables
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Mixer 2 uses the generic mixer equation above by mixing with S3 [0 200]. The initial
interval bound vector produced for stream S8 is therefore [200 800]. However, the product
constraint for this product is that the product concentration should be less that 200. No part of
the interval satisfies the product constraint so this interval can be deleted from the candidate
set of solutions. If the interval did completely satisfy the constraint it would be accepted by
the algorithm, the objective function evaluated and the interval bisected or contracted by one
of the contraction methods.

This can be repeated for component 2. If there were many components, as would normally
be the case for industrial pooling problems with many feeds and products, the process would
be identical. Although a very simple example this demonstrates how the propagation would
work through modules.
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